511 research outputs found

    Quantum bath refrigeration towards absolute zero: unattainability principle challenged

    Full text link
    A minimal model of a quantum refrigerator (QR), i.e. a periodically phase-flipped two-level system permanently coupled to a finite-capacity bath (cold bath) and an infinite heat dump (hot bath), is introduced and used to investigate the cooling of the cold bath towards the absolute zero (T=0). Remarkably, the temperature scaling of the cold-bath cooling rate reveals that it does not vanish as T->0 for certain realistic quantized baths, e.g. phonons in strongly disordered media (fractons) or quantized spin-waves in ferromagnets (magnons). This result challenges Nernst's third-law formulation known as the unattainability principle

    Entropy and Its Quantum Thermodynamical Implication for Anomalous Spectral Systems

    Full text link
    The state function entropy and its quantum thermodynamical implication for two typical dissipative systems with anomalous spectral densities are studied by investigating on their low-temperature quantum behavior. In all cases it is found that the entropy decays quickly and vanishes as the temperature approaches zero. This reveals a good conformity with the third law of thermodynamics and provides another evidence for the validity of fundamental thermodynamical laws in the quantum dissipative region.Comment: 10 pages, 3 figure

    Transient energy excitation in shortcuts to adiabaticity for the time dependent harmonic oscillator

    Full text link
    There is recently a surge of interest to cut down the time it takes to change the state of a quantum system adiabatically. We study for the time-dependent harmonic oscillator the transient energy excitation in speed-up processes designed to reproduce the initial populations at some predetermined final frequency and time, providing lower bounds and examples. Implications for the limits imposed to the process times and for the principle of unattainability of the absolute zero, in a single expansion or in quantum refrigerator cycles, are drawn.Comment: 7 pages, 6 figure

    The Quantum Refrigerator: The quest for absolute zero

    Full text link
    The scaling of the optimal cooling power of a reciprocating quantum refrigerator is sought as a function of the cold bath temperature as Tc→0T_c \to 0. The working medium consists of noninteracting particles in a harmonic potential. Two closed-form solutions of the refrigeration cycle are analyzed, and compared to a numerical optimization scheme, focusing on cooling toward zero temperature. The optimal cycle is characterized by linear relations between the heat extracted from the cold bath, the energy level spacing of the working medium and the temperature. The scaling of the optimal cooling rate is found to be proportional to Tc3/2T_c^{3/2} giving a dynamical interpretation to the third law of thermodynamics

    Universal restrictions to the conversion of heat into work derived from the analysis of the Nernst theorem as a uniform limit

    Full text link
    We revisit the relationship between the Nernst theorem and the Kelvin-Planck statement of the second law. We propose that the exchange of entropy uniformly vanishes as the temperature goes to zero. The analysis of this assumption shows that is equivalent to the fact that the compensation of a Carnot engine scales with the absorbed heat so that the Nernst theorem should be embedded in the statement of the second law. ----- Se analiza la relaci{\'o}n entre el teorema de Nernst y el enunciado de Kelvin-Planck del segundo principio de la termodin{\'a}mica. Se{\~n}alamos el hecho de que el cambio de entrop{\'\i}a tiende uniformemente a cero cuando la temperatura tiende a cero. El an{\'a}lisis de esta hip{\'o}tesis muestra que es equivalente al hecho de que la compensaci{\'o}n de una m{\'a}quina de Carnot escala con el calor absorbido del foco caliente, de forma que el teorema de Nernst puede derivarse del enunciado del segundo principio.Comment: 8pp, 4 ff. Original in english. Also available translation into spanish. Twocolumn format. RevTe

    Decoupling electrocaloric effect from Joule heating in a solid state cooling device

    Get PDF
    We report a heat dynamics analysis of the electrocaloric effect (ECE) in commercial multilayer capacitors based on BaTiO3 dielectric, a promising candidate for applications as a solid state cooling device. Direct measurements of the time evolution of the sample's temperature changes under different applied voltages allow us to decouple the contributions from Joule heating and from the ECE. Heat balance equations were used to model the thermal coupling between different parts of the system. Fingerprints of Joule heating and the ECE could be resolved at different time scales. We argue that Joule heating and the thermal coupling of the device to the environment must be carefully taken in to account in future developments of refrigeration technologies employing the ECE.Comment: Acepted to be published in Applied Phys. Letters (2011

    Spacetime and vacuum as seen from Moscow

    Get PDF
    An extended text of the talk given at the conference ``2001: A Spacetime Odyssey'', to be published in the Proceedings of the Inaugural Conference of the Michigan Center for Theoretical Physics, University of Michigan, Ann Arbor, 21-25 May 2001, M.J. Duff and J.T. Liu eds., World Scientific, Singapore, 2002; and of Historical Lecture ``Vacuum as seen from Moscow'' at the CERN Summer School, 10 August, 2001. Contents: Introduction; Pomeranchuk on vacuum; Landau on parity, P, and combined parity, CP; Search and discovery of KL0→π+π−K_L^0 \to \pi^+ \pi^-; "Mirror world"; Zeldovich and cosmological term; QCD vacuum condensates; Sakharov and baryonic asymmetry of the universe, BAU; Kirzhnits and phase transitions; Vacuum domain walls; Monopoles, strings, instantons, and sphalerons; False vacuum; Inflation; Brane and Bulk; Acknowledgments; References.Comment: 17 pages, 2 figure

    Low temperature Thermodynamics in the Context of Dissipative Diamagnetism

    Full text link
    We revisit here the effect of quantum dissipation on the much - studied problem of Landau diamagnetism, and analyze the results in the light of the third law of thermodynamics. The case of an additional parabolic potential is separately assessed. We find that dissipation arising from strong coupling of the system to its environment qualitatively alters the low-temperature thermodynamic attributes such as the entropy and the specific heat

    Electronic thermal transport in strongly correlated multilayered nanostructures

    Full text link
    The formalism for a linear-response many-body treatment of the electronic contributions to thermal transport is developed for multilayered nanostructures. By properly determining the local heat-current operator, it is possible to show that the Jonson-Mahan theorem for the bulk can be extended to inhomogeneous problems, so the various thermal-transport coefficient integrands are related by powers of frequency (including all effects of vertex corrections when appropriate). We illustrate how to use this formalism by showing how it applies to measurements of the Peltier effect, the Seebeck effect, and the thermal conductance.Comment: 17 pages, 4 figures, submitted to Phys. Rev.
    • …
    corecore